Spontaneous symmetry breaking in active droplets provides a generic route to motility.
نویسندگان
چکیده
We explore a generic mechanism whereby a droplet of active matter acquires motility by the spontaneous breakdown of a discrete symmetry. The model we study offers a simple representation of a "cell extract" comprising, e.g., a droplet of actomyosin solution. (Such extracts are used experimentally to model the cytoskeleton). Actomyosin is an active gel whose polarity describes the mean sense of alignment of actin fibres. In the absence of polymerization and depolymerization processes ('treadmilling'), the gel's dynamics arises solely from the contractile motion of myosin motors; this should be unchanged when polarity is inverted. Our results suggest that motility can arise in the absence of treadmilling, by spontaneous symmetry breaking (SSB) of polarity inversion symmetry. Adapting our model to wall-bound cells in two dimensions, we find that as wall friction is reduced, treadmilling-induced motility falls but SSB-mediated motility rises. The latter might therefore be crucial in three dimensions where frictional forces are likely to be modest. At a supracellular level, the same generic mechanism can impart motility to aggregates of nonmotile but active bacteria; we show that SSB in this (extensile) case leads generically to rotational as well as translational motion.
منابع مشابه
Hydrodynamic instabilities provide a generic route to spontaneous biomimetic oscillations in chemomechanically active filaments
Non-equilibrium processes which convert chemical energy into mechanical motion enable the motility of organisms. Bundles of inextensible filaments driven by energy transduction of molecular motors form essential components of micron-scale motility engines like cilia and flagella. The mimicry of cilia-like motion in recent experiments on synthetic active filaments supports the idea that generic ...
متن کاملImmersed Boundary Simulations of Active Fluid Droplets
We present numerical simulations of active fluid droplets immersed in an external fluid in 2-dimensions using an Immersed Boundary method to simulate the fluid droplet interface as a Lagrangian mesh. We present results from two example systems, firstly an active isotropic fluid boundary consisting of particles that can bind and unbind from the interface and generate surface tension gradients th...
متن کاملSwimming droplets driven by a surface wave
Self-propelling motion is ubiquitous for soft active objects such as crawling cells, active filaments, and liquid droplets moving on surfaces. Deformation and energy dissipation are required for self-propulsion of both living and non-living matter. From the perspective of physics, searching for universal laws of self-propelled motions in a dissipative environment is worthwhile, regardless of th...
متن کاملQuasi-Isotropization of the Inhomogeneous Mixmaster Universe Induced by an Inflationary Process
We derive a “generic” inhomogeneous “bridge” solution for a cosmological model in the presence of a real self-interacting scalar field. This solution connects a Kasnerlike regime to an inflationary stage of evolution and therefore provides a dynamical mechanism for the quasi-isotropization of the universe. In the framework of a standard Arnowitt-Deser-Misner Hamiltonian formulation of the dynam...
متن کاملSpontaneous R-Symmetry Breaking in O’Raifeartaigh Models
We study the question of whether spontaneous U(1)R breaking can occur in O’Raifeartaightype models of spontaneous supersymmetry breaking. We show that in order for it to occur, there must be a field in the theory with R-charge different from 0 or 2. We construct the simplest O’Raifeartaigh model with this property, and we find that for a wide range of parameters, it has a meta-stable vacuum whe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 31 شماره
صفحات -
تاریخ انتشار 2012